Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Infect ; 72(6): 667-677, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27018131

RESUMO

OBJECTIVES: Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS: Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. RESULTS: A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8-10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. CONCLUSION: Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt.


Assuntos
Portador Sadio/epidemiologia , Meningite Meningocócica/epidemiologia , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis/isolamento & purificação , Neisseria/isolamento & purificação , Faringe/microbiologia , Adolescente , Adulto , África/epidemiologia , Proteínas da Membrana Bacteriana Externa/genética , Portador Sadio/microbiologia , Criança , Pré-Escolar , Feminino , Variação Genética/genética , Humanos , Lactente , Masculino , Meningite Meningocócica/microbiologia , Infecções Meningocócicas/microbiologia , Neisseria/classificação , Prevalência , Fatores de Risco , Adulto Jovem
2.
Clin Infect Dis ; 60(10): 1512-20, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25814628

RESUMO

BACKGROUND: Herd protection by meningococcal vaccines is conferred by population-level reduction of meningococcal nasopharyngeal colonization. Given the inverse epidemiological association between colonization by commensal Neisseria lactamica and meningococcal disease, we investigated whether controlled infection of human volunteers with N. lactamica prevents colonization by Neisseria meningitidis. METHODS: In a block-randomized human challenge study, 310 university students were inoculated with 10(4) colony-forming units of N. lactamica or were sham-inoculated, and carriage was monitored for 26 weeks, after which all participants were reinoculated with N. lactamica and resampled 2 weeks later. RESULTS: At baseline, natural N. meningitidis carriage in the control group was 22.4% (36/161), which increased to 33.6% (48/143) by week 26. Two weeks after inoculation of N. lactamica, 33.6% (48/143) of the challenge group became colonized with N. lactamica. In this group, meningococcal carriage reduced from 24.2% (36/149) at inoculation to 14.7% (21/143) 2 weeks after inoculation (-9.5%; P = .006). The inhibition of meningococcal carriage was only observed in carriers of N. lactamica, was due both to displacement of existing meningococci and to inhibition of new acquisition, and persisted over at least 16 weeks. Crossover inoculation of controls with N. lactamica replicated the result. Genome sequencing showed that inhibition affected multiple meningococcal sequence types. CONCLUSIONS: The inhibition of meningococcal carriage by N. lactamica is even more potent than after glycoconjugate meningococcal vaccination. Neisseria lactamica or its components could be a novel bacterial medicine to suppress meningococcal outbreaks. This observation explains the epidemiological observation of natural immunity conferred by carriage of N. lactamica. CLINICAL TRIALS REGISTRATION: NCT02249598.


Assuntos
Portador Sadio/microbiologia , Portador Sadio/prevenção & controle , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Neisseria lactamica/crescimento & desenvolvimento , Neisseria meningitidis/isolamento & purificação , Probióticos/administração & dosagem , Adolescente , Adulto , Antibiose , Feminino , Humanos , Masculino , Estudos Prospectivos , Resultado do Tratamento , Adulto Jovem
3.
BMC Genomics ; 15: 253, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24690385

RESUMO

BACKGROUND: Neisseria meningitidis expresses type four pili (Tfp) which are important for colonisation and virulence. Tfp have been considered as one of the most variable structures on the bacterial surface due to high frequency gene conversion, resulting in amino acid sequence variation of the major pilin subunit (PilE). Meningococci express either a class I or a class II pilE gene and recent work has indicated that class II pilins do not undergo antigenic variation, as class II pilE genes encode conserved pilin subunits. The purpose of this work was to use whole genome sequences to further investigate the frequency and variability of the class II pilE genes in meningococcal isolate collections. RESULTS: We analysed over 600 publically available whole genome sequences of N. meningitidis isolates to determine the sequence and genomic organization of pilE. We confirmed that meningococcal strains belonging to a limited number of clonal complexes (ccs, namely cc1, cc5, cc8, cc11 and cc174) harbour a class II pilE gene which is conserved in terms of sequence and chromosomal context. We also identified pilS cassettes in all isolates with class II pilE, however, our analysis indicates that these do not serve as donor sequences for pilE/pilS recombination. Furthermore, our work reveals that the class II pilE locus lacks the DNA sequence motifs that enable (G4) or enhance (Sma/Cla repeat) pilin antigenic variation. Finally, through analysis of pilin genes in commensal Neisseria species we found that meningococcal class II pilE genes are closely related to pilE from Neisseria lactamica and Neisseria polysaccharea, suggesting horizontal transfer among these species. CONCLUSIONS: Class II pilins can be defined by their amino acid sequence and genomic context and are present in meningococcal isolates which have persisted and spread globally. The absence of G4 and Sma/Cla sequences adjacent to the class II pilE genes is consistent with the lack of pilin subunit variation in these isolates, although horizontal transfer may generate class II pilin diversity. This study supports the suggestion that high frequency antigenic variation of pilin is not universal in pathogenic Neisseria.


Assuntos
Cromossomos Bacterianos , Proteínas de Fímbrias/genética , Genoma Bacteriano , Neisseria meningitidis/genética , Alelos , Sequência de Aminoácidos , Biologia Computacional , Proteínas de Fímbrias/química , Conversão Gênica , Expressão Gênica , Ordem dos Genes , Variação Genética , Genômica , Dados de Sequência Molecular , Neisseria meningitidis/classificação , Filogenia , Alinhamento de Sequência
4.
J Clin Microbiol ; 52(5): 1375-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24523465

RESUMO

The comparison of 16S rRNA gene sequences is widely used to differentiate bacteria; however, this gene can lack resolution among closely related but distinct members of the same genus. This is a problem in clinical situations in those genera, such as Neisseria, where some species are associated with disease while others are not. Here, we identified and validated an alternative genetic target common to all Neisseria species which can be readily sequenced to provide an assay that rapidly and accurately discriminates among members of the genus. Ribosomal multilocus sequence typing (rMLST) using ribosomal protein genes has been shown to unambiguously identify these bacteria. The PubMLST Neisseria database (http://pubmlst.org/neisseria/) was queried to extract the 53 ribosomal protein gene sequences from 44 genomes from diverse species. Phylogenies reconstructed from these genes were examined, and a single 413-bp fragment of the 50S ribosomal protein L6 (rplF) gene was identified which produced a phylogeny that was congruent with the phylogeny reconstructed from concatenated ribosomal protein genes. Primers that enabled the amplification and direct sequencing of the rplF gene fragment were designed to validate the assay in vitro and in silico. Allele sequences were defined for the gene fragment, associated with particular species names, and stored on the PubMLST Neisseria database, providing a curated electronic resource. This approach provides an alternative to 16S rRNA gene sequencing, which can be readily replicated for other organisms for which more resolution is required, and it has potential applications in high-resolution metagenomic studies.


Assuntos
Neisseria/classificação , Neisseria/genética , Proteínas Ribossômicas/genética , Alelos , DNA Bacteriano/genética , Bases de Dados Genéticas , Tipagem de Sequências Multilocus/métodos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
5.
Int J Syst Evol Microbiol ; 63(Pt 10): 3920-3926, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24097834

RESUMO

Phylogenies generated from whole genome sequence (WGS) data provide definitive means of bacterial isolate characterization for typing and taxonomy. The species status of strains recently defined with conventional taxonomic approaches as representing Neisseria oralis was examined by the analysis of sequences derived from WGS data, specifically: (i) 53 Neisseria ribosomal protein subunit (rps) genes (ribosomal multi-locus sequence typing, rMLST); and (ii) 246 Neisseria core genes (core genome MLST, cgMLST). These data were compared with phylogenies derived from 16S and 23S rRNA gene sequences, demonstrating that the N. oralis strains were monophyletic with strains described previously as representing 'Neisseria mucosa var. heidelbergensis' and that this group was of equivalent taxonomic status to other well-described species of the genus Neisseria. Phylogenetic analyses also indicated that Neisseria sicca and Neisseria macacae should be considered the same species as Neisseria mucosa and that Neisseria flavescens should be considered the same species as Neisseria subflava. Analyses using rMLST showed that some strains currently defined as belonging to the genus Neisseria were more closely related to species belonging to other genera within the family; however, whole genome analysis of a more comprehensive selection of strains from within the family Neisseriaceae would be necessary to confirm this. We suggest that strains previously identified as representing 'N. mucosa var. heidelbergensis' and deposited in culture collections should be renamed N. oralis. Finally, one of the strains of N. oralis was able to ferment lactose, due to the presence of ß-galactosidase and lactose permease genes, a characteristic previously thought to be unique to Neisseria lactamica, which therefore cannot be thought of as diagnostic for this species; however, the rMLST and cgMLST analyses confirm that N. oralis is most closely related to N. mucosa.


Assuntos
Neisseria mucosa/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Tipagem de Sequências Multilocus , Neisseria mucosa/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Proteínas Ribossômicas/genética , Análise de Sequência de DNA
6.
Microbiology (Reading) ; 159(Pt 9): 1920-1930, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23813677

RESUMO

A new generation of vaccines containing multiple protein components that aim to provide broad protection against serogroup B meningococci has been developed. One candidate, 4CMenB (4 Component MenB), has been approved by the European Medicines Agency, but is predicted to provide at most 70-80 % strain coverage; hence there is a need for second-generation vaccines that achieve higher levels of coverage. Prior knowledge of the diversity of potential protein vaccine components is a key step in vaccine design. A number of iron import systems have been targeted in meningococcal vaccine development, including the HmbR and HpuAB outer-membrane proteins, which mediate the utilization of haemoglobin or haemoglobin-haptoglobin complexes as iron sources. While the genetic diversity of HmbR has been described, little is known of the diversity of HpuAB. Using whole genome sequences deposited in a Bacterial Isolate Genome Sequence Database (BIGSDB), the prevalence and diversity of HpuAB among Neisseria were investigated. HpuAB was widely present in a range of Neisseria species whereas HmbR was mainly limited to the pathogenic species Neisseria meningitidis and Neisseria gonorrhoeae. Patterns of sequence variation in sequences from HpuAB proteins were suggestive of recombination and diversifying selection consistent with strong immune selection. HpuAB was subject to repeat-mediated phase variation in pathogenic Neisseria and the closely related non-pathogenic Neisseria species Neisseria lactamica and Neisseria polysaccharea but not in the majority of other commensal Neisseria species. These findings are consistent with HpuAB being subject to frequent genetic transfer potentially limiting the efficacy of this receptor as a vaccine candidate.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo , Neisseria/genética , Receptores de Superfície Celular/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Variação Genética , Humanos , Dados de Sequência Molecular , Neisseria/química , Neisseria/classificação , Neisseria/metabolismo , Infecções por Neisseriaceae/microbiologia , Filogenia , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
7.
Clin Vaccine Immunol ; 20(9): 1360-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803905

RESUMO

The poor immunogenicity of the meningococcal serogroup B (MenB) capsule has led to the development of vaccines targeting subcapsular antigens, in particular the immunodominant and diverse outer membrane porin, PorA. These vaccines are largely strain specific; however, they offer limited protection against the diverse MenB-associated diseases observed in many industrialized nations. To broaden the scope of its protection, the multicomponent vaccine (4CMenB) incorporates a PorA-containing outer membrane vesicle (OMV) alongside relatively conserved recombinant protein components, including factor H-binding protein (fHbp), Neisseria adhesin A (NadA), and neisserial heparin-binding antigen (NHBA). The expression of PorA is unique to meningococci (Neisseria meningitidis); however, many subcapsular antigens are shared with nonpathogenic members of the genus Neisseria that also inhabit the nasopharynx. These organisms may elicit cross-protective immunity against meningococci and/or occupy a niche that might otherwise accommodate pathogens. The potential for 4CMenB responses to impact such species (and vice versa) was investigated by determining the genetic distribution of the primary 4CMenB antigens among diverse members of the common childhood commensal, Neisseria lactamica. All the isolates possessed nhba but were devoid of fhbp and nadA. The nhba alleles were mainly distinct from but closely related to those observed among a representative panel of invasive MenB isolates from the same broad geographic region. We made similar findings for the immunogenic typing antigen, FetA, which constitutes a major part of the 4CMenB OMV. Thus, 4CMenB vaccine responses may impact or be impacted by nasopharyngeal carriage of commensal neisseriae. This highlights an area for further research and surveillance should the vaccine be routinely implemented.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Meningocócicas/imunologia , Neisseria lactamica/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Adolescente , Adulto , Antígenos de Bactérias/genética , Portador Sadio/imunologia , Portador Sadio/microbiologia , Criança , Pré-Escolar , Proteção Cruzada , Reações Cruzadas , Feminino , Humanos , Lactente , Masculino , Vacinas Meningocócicas/genética , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Neisseria lactamica/genética , Neisseria meningitidis Sorogrupo B/genética , Adulto Jovem
8.
Emerg Infect Dis ; 19(4): 566-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23628376

RESUMO

Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have also been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. The use of multiple names for some of the genes involved in capsule synthesis, combined with the need for rapid diagnosis of serogroups commonly associated with invasive meningococcal disease, prompted a requirement for a consistent approach to the nomenclature of capsule genes. In this report, a comprehensive description of all N. meningitidis serogroups is provided, along with a proposed nomenclature, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference.


Assuntos
Cápsulas Bacterianas/genética , Cromossomos Bacterianos , Genes Bacterianos , Neisseria meningitidis/genética , Polissacarídeos Bacterianos/genética , Cápsulas Bacterianas/metabolismo , Loci Gênicos , Humanos , Espectroscopia de Ressonância Magnética , Infecções Meningocócicas/microbiologia , Família Multigênica , Neisseria meningitidis/classificação , Neisseria meningitidis/isolamento & purificação , Neisseria meningitidis/patogenicidade , Reação em Cadeia da Polimerase , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/isolamento & purificação , Sorotipagem , Terminologia como Assunto , Virulência
9.
Future Microbiol ; 7(7): 873-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22827308

RESUMO

Epidemic disease caused by Neisseria meningitidis, the meningococcus, has been recognized for two centuries, but remains incompletely controlled and understood. There have been dramatic reductions in serogroup A and C meningococcal disease following the introduction of protein-polysaccharide conjugate vaccines, but there is currently no comprehensive vaccine against serogroup B meningococci. Genetic analyses of meningococcal populations have provided many insights into the biology, evolution and pathogenesis of this important pathogen. The meningococcus, and its close relative the gonococcus, are the only pathogenic members of the genus Neisseria, and the invasive propensity of meningococci varies widely, with approximately a dozen 'hyperinvasive lineages' responsible for most disease. Despite this, attempts to identify a 'pathogenome', a subset of genes associated with the invasive phenotypes, have failed; however, genome-wide studies of representative meningococcal isolates using high-throughput sequencing are beginning to provide details on the relationship of invasive phenotype and genotype in this fascinating organism and how this relationship has evolved.


Assuntos
Evolução Molecular , Infecções Meningocócicas/microbiologia , Metagenômica , Neisseria meningitidis/genética , Bases de Dados Genéticas , Genótipo , Humanos , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Epidemiologia Molecular , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/imunologia , Neisseria meningitidis Sorogrupo B/patogenicidade , Fenótipo
10.
Microbiology (Reading) ; 158(Pt 6): 1570-1580, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22422752

RESUMO

In common with other bacterial taxa, members of the genus Neisseria are classified using a range of phenotypic and biochemical approaches, which are not entirely satisfactory in assigning isolates to species groups. Recently, there has been increasing interest in using nucleotide sequences for bacterial typing and taxonomy, but to date, no broadly accepted alternative to conventional methods is available. Here, the taxonomic relationships of 55 representative members of the genus Neisseria have been analysed using whole-genome sequence data. As genetic material belonging to the accessory genome is widely shared among different taxa but not present in all isolates, this analysis indexed nucleotide sequence variation within sets of genes, specifically protein-coding genes that were present and directly comparable in all isolates. Variation in these genes identified seven species groups, which were robust to the choice of genes and phylogenetic clustering methods used. The groupings were largely, but not completely, congruent with current species designations, with some minor changes in nomenclature and the reassignment of a few isolates necessary. In particular, these data showed that isolates classified as Neisseria polysaccharea are polyphyletic and probably include more than one taxonomically distinct organism. The seven groups could be reliably and rapidly generated with sequence variation within the 53 ribosomal protein subunit (rps) genes, further demonstrating that ribosomal multilocus sequence typing (rMLST) is a practicable and powerful means of characterizing bacteria at all levels, from domain to strain.


Assuntos
Genômica/métodos , Infecções por Bactérias Gram-Negativas/microbiologia , Neisseria/classificação , Neisseria/isolamento & purificação , Filogenia , Técnicas de Tipagem Bacteriana/métodos , Variação Genética , Humanos , Dados de Sequência Molecular , Neisseria/genética , Análise de Sequência de DNA
11.
Microbiology (Reading) ; 158(Pt 4): 1005-1015, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22282518

RESUMO

No single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits (rps genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly. The rps loci are ideal targets for a universal characterization scheme as they are: (i) present in all bacteria; (ii) distributed around the chromosome; and (iii) encode proteins which are under stabilizing selection for functional conservation. Collectively, the rps loci exhibit variation that resolves bacteria into groups at all taxonomic and most typing levels, providing significantly more resolution than 16S small subunit rRNA gene phylogenies. A web-accessible expandable database, comprising whole-genome data from more than 1900 bacterial isolates, including 28 draft genomes assembled de novo from the European Bioinformatics Institute (EBI) sequence read archive, has been assembled. The rps gene variation catalogued in this database permits rapid and computationally non-intensive identification of the phylogenetic position of any bacterial sequence at the domain, phylum, class, order, family, genus, species and strain levels. The groupings generated with rMLST data are consistent with current nomenclature schemes and independent of the clustering algorithm used. This approach is applicable to the other domains of life, potentially providing a rational and universal approach to the classification of life that is based on one of its fundamental features, the translation mechanism.


Assuntos
Bactérias/classificação , Tipagem de Sequências Multilocus , Ribossomos/genética , Bactérias/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Bases de Dados de Ácidos Nucleicos , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genética
12.
BMC Genomics ; 11: 652, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21092259

RESUMO

BACKGROUND: The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. RESULTS: Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent. CONCLUSION: The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed.


Assuntos
Evolução Molecular , Genes Bacterianos/genética , Neisseria lactamica/genética , Neisseria lactamica/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Composição de Bases/genética , Sequência de Bases , Ordem dos Genes/genética , Dados de Sequência Molecular , Neisseria lactamica/patogenicidade , Filogenia , Homologia de Sequência do Ácido Nucleico , Virulência/genética
13.
Int J Med Microbiol ; 299(2): 133-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18718812

RESUMO

Meningococcal FetA is an iron-regulated, immunogenic outer membrane protein and vaccine component. The most diverse region of this protein is a previously defined variable region (VR) that has been shown to be immunodominant. In this analysis, a total of 275 Neisseria lactamica isolates, collected during studies of nasopharyngeal bacterial carriage in infants, were examined for the presence of a fetA gene. The fetA VR nucleotide sequence was determined for 217 of these isolates, with fetA apparently absent from 58 isolates, the majority of which belonged to the ST-624 clonal complex. The VR in N. lactamica was compared to the same region in N. meningitidis, N. gonorrhoeae, and a number of other commensal Neisseria. Identical fetA variable region sequences were identified among commensal and pathogenic Neisseria, suggesting a common gene pool, differing from other antigens in this respect. Carriage of commensal Neisseria species, such as N. lactamica, that express FetA may be involved in the development of natural immunity to meningococcal disease.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Neisseria lactamica/genética , Portador Sadio/microbiologia , Análise por Conglomerados , DNA Bacteriano/genética , Genótipo , Nasofaringe/microbiologia , Neisseria lactamica/isolamento & purificação , Infecções por Neisseriaceae/microbiologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
14.
Microbiology (Reading) ; 154(Pt 5): 1525-1534, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18451061

RESUMO

One potential vaccine strategy in the fight against meningococcal disease involves the exploitation of outer-membrane components of Neisseria lactamica, a commensal bacterium closely related to the meningococcus, Neisseria meningitidis. Although N. lactamica shares many surface structures with the meningococcus, little is known about the antigenic diversity of this commensal bacterium or the antigenic relationships between N. lactamica and N. meningitidis. Here, the N. lactamica porin protein (Por) was examined and compared to the related PorB antigens of N. meningitidis, to investigate potential involvement in anti-meningococcal immunity. Relationships among porin sequences were determined using distance-based methods and F(ST), and maximum-likelihood analyses were used to compare the selection pressures acting on the encoded proteins. These analyses demonstrated that the N. lactamica porin was less diverse than meningococcal PorB and although it was subject to positive selection, this was not as strong as the positive selection pressures acting on the meningococcal porin. In addition, the N. lactamica porin gene sequences and the protein sequences of the loop regions predicted to be exposed to the human immune system were dissimilar to the corresponding sequences in the meningococcus. This suggests that N. lactamica Por, contrary to previous suggestions, may have limited involvement in the development of natural immunity to meningococcal disease and might not be effective as a meningococcal vaccine component.


Assuntos
Neisseria lactamica/genética , Neisseria meningitidis/genética , Polimorfismo Genético , Porinas/genética , Sequência de Aminoácidos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Neisseria lactamica/imunologia , Neisseria lactamica/isolamento & purificação , Neisseria meningitidis/imunologia , Faringe/microbiologia , Porinas/imunologia , Seleção Genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
15.
BMC Biol ; 5: 35, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17825091

RESUMO

BACKGROUND: Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species. RESULTS: A total of 149 gonococcal isolates were typed and submitted to the Neisseria MLST database. Although relatively few (27) polymorphisms were detected among the seven MLST loci, a total of 66 unique allele combinations (sequence types, STs), were observed, a number comparable to that seen among isolate collections of the more diverse meningococcus. Patterns of genetic variation were consistent with high levels of recombination generating this diversity. There was no evidence for geographical structuring among the isolates examined, with isolates collected in Liverpool, UK, showing levels of diversity similar to a global collection of isolates. There was, however, evidence that populations of N. meningitidis, N. gonorrhoeae and N. lactamica were distinct, with little support for frequent genetic recombination among these species, with the sequences from the gdh locus alone grouping the species into distinct clusters. CONCLUSION: The seven loci Neisseria MLST scheme was readily adapted to N. gonorrhoeae isolates, providing a highly discriminatory typing method. In addition, these data permitted phylogenetic and population genetic inferences to be made, including direct comparisons with N. meningitidis and N. lactamica. Examination of these data demonstrated that alleles were rarely shared among the three species. Analysis of variation at a single locus, gdh, provided a rapid means of identifying misclassified isolates and determining whether mixed cultures were present.


Assuntos
DNA Bacteriano/genética , Variação Genética , Neisseria gonorrhoeae/classificação , Alelos , Técnicas de Tipagem Bacteriana , Evolução Molecular , Neisseria gonorrhoeae/genética , Neisseria lactamica/classificação , Neisseria lactamica/genética , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
16.
Infect Immun ; 73(4): 2424-32, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15784588

RESUMO

Neisseria lactamica, a harmless human commensal found predominantly in the upper respiratory tracts of infants, is closely related to Neisseria meningitidis, a pathogen of global significance. Colonization with N. lactamica may be responsible for the increase in immunity to meningococcal disease that occurs during childhood, when rates of meningococcal carriage are low. This observation has led to the suggestion that N. lactamica whole cells or components are potential constituents of novel meningococcal vaccines. However, the dynamics of carriage and population diversity of N. lactamica in children are poorly understood, presenting difficulties for the choice of representative isolates for use in vaccine development. This problem was addressed by the multilocus sequence typing of N. lactamica isolates from two longitudinal studies of bacterial carriage in infants. The studies comprised 100 and 216 subjects, with N. lactamica carriage monitored from age 4 weeks until age 96 weeks and from age 2 weeks until age 24 weeks, respectively. The maximum observed carriage rate was 44% at 56 weeks of age, with isolates obtained on multiple visits for the majority (54 of 75, 72%) of carriers. The N. lactamica isolates were genetically diverse, with 69 distinct genotypes recovered from the 75 infants. Carriage was generally long-lived, with an average rate of loss of under 1% per week during the 28 weeks following acquisition. Only 11 of the 75 infants carried more than one genotypically unique isolate during the course of the study. Some participants shared identical isolates with siblings, but none shared identical isolates with their parents. These findings have implications for the design of vaccines based on this organism.


Assuntos
Portador Sadio/microbiologia , Neisseria lactamica/genética , Vacinas Bacterianas/imunologia , Família , Variação Genética , Genótipo , Humanos , Lactente , Neisseria lactamica/imunologia , Neisseria lactamica/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...